ibeis.algo.detect package¶
Subpackages¶
Submodules¶
ibeis.algo.detect.grabmodels module¶
-
ibeis.algo.detect.grabmodels.
ensure_models
(modeldir='default', verbose=True)[source]¶ Parameters: modeldir (str) – CommandLine:
python -m ibeis.algo.detect.grabmodels --test-ensure_models
Example
>>> # ENABLE_DOCTEST >>> from ibeis.algo.detect.grabmodels import * # NOQA >>> modeldir = 'default' >>> result = ensure_models(modeldir) >>> print(result)
-
ibeis.algo.detect.grabmodels.
get_species_trees_paths
(species, modeldir='default')[source]¶ Parameters: - species –
- modeldir (str) –
Returns: trees_path
Return type: ?
CommandLine:
python -m ibeis.algo.detect.grabmodels --test-get_species_trees_paths
Example
>>> # ENABLE_DOCTEST >>> from ibeis.algo.detect.grabmodels import * # NOQA >>> import ibeis >>> # build test data >>> species = ibeis.const.TEST_SPECIES.ZEB_PLAIN >>> modeldir = 'default' >>> # execute function >>> trees_path = get_species_trees_paths(species, modeldir) >>> # verify results >>> result = str(trees_path) >>> print(result)
-
ibeis.algo.detect.grabmodels.
redownload_models
(modeldir='default', verbose=True)[source]¶ Parameters: - modeldir (str) – (default = ‘default’)
- verbose (bool) – verbosity flag(default = True)
CommandLine:
python -m ibeis.algo.detect.grabmodels --test-redownload_models
Example
>>> # SCRIPT >>> from ibeis.algo.detect.grabmodels import * # NOQA >>> result = redownload_models()
ibeis.algo.detect.randomforest module¶
Interface to pyrf random forest object detection.
-
ibeis.algo.detect.randomforest.
detect
(ibs, gpath_list, tree_path_list, **kwargs)[source]¶ Parameters: - gpath_list (list of str) – the list of image paths that need detection
- tree_path_list (list of str) – the list of trees to load for detection
Kwargs (optional): refer to the PyRF documentation for configuration settings
Returns: iter
-
ibeis.algo.detect.randomforest.
detect_gid_list
(ibs, gid_list, tree_path_list, downsample=True, **kwargs)[source]¶ Parameters: - gid_list (list of int) – the list of IBEIS image_rowids that need detection
- tree_path_list (list of str) – the list of trees to load for detection
- downsample (bool, optional) –
a flag to indicate if the original image sizes should be used; defaults to True
True: ibs.get_image_detectpaths() is used False: ibs.get_image_paths() is used
Kwargs (optional): refer to the PyRF documentation for configuration settings
Yields: results (list of dict)
-
ibeis.algo.detect.randomforest.
detect_gid_list_with_species
(ibs, gid_list, species, downsample=True, **kwargs)[source]¶ Parameters: - gid_list (list of int) – the list of IBEIS image_rowids that need detection
- species (str) – the species that should be used to select the pre-trained random forest model
- downsample (bool, optional) –
a flag to indicate if the original image sizes should be used; defaults to True
True: ibs.get_image_detectpaths() is used False: ibs.get_image_paths() is used
Kwargs (optional): refer to the PyRF documentation for configuration settings
Returns: iter CommandLine:
python -m ibeis.algo.detect.randomforest --test-detect_gid_list_with_species
Example
>>> # DISABLE_DOCTEST >>> from ibeis.algo.detect.randomforest import * # NOQA >>> from ibeis.algo.detect.randomforest import _get_models # NOQA >>> import ibeis >>> # build test data >>> ibs = ibeis.opendb('testdb1') >>> species = ibeis.const.TEST_SPECIES.ZEB_PLAIN >>> gid_list = ibs.get_valid_gids() >>> downsample = True >>> kwargs = {} >>> # execute function >>> result = detect_gid_list_with_species(ibs, gid_list, species, downsample) >>> # verify results >>> print(result)
-
ibeis.algo.detect.randomforest.
detect_gpath_list_with_species
(ibs, gpath_list, species, **kwargs)[source]¶ Parameters: - gpath_list (list of str) – the list of image paths that need detection
- species (str) – the species that should be used to select the pre-trained random forest model
- downsample (bool, optional) –
a flag to indicate if the original image sizes should be used; defaults to True
True: ibs.get_image_detectpaths() is used False: ibs.get_image_paths() is used
Kwargs (optional): refer to the PyRF documentation for configuration settings
Yields: iter
-
ibeis.algo.detect.randomforest.
train_gid_list
(ibs, gid_list, trees_path=None, species=None, setup=True, teardown=False, **kwargs)[source]¶ Parameters: - gid_list (list of int) – the list of IBEIS image_rowids that need detection
- trees_path (str) – the path that the trees will be saved into (along with temporary training inventory folders that are deleted once training is finished)
- species (str) – the species that should be used to assign to the newly trained trees
Kwargs (optional): refer to the PyRF documentation for configuration settings
Returns: None
-
ibeis.algo.detect.randomforest.
train_gpath_list
(ibs, train_pos_cpath_list, train_neg_cpath_list, trees_path=None, **kwargs)[source]¶ Parameters: - train_pos_cpath_list (list of str) – the list of positive image paths for training
- train_neg_cpath_list (list of str) – the list of negative image paths for training
- trees_path (str) – the path that the trees will be saved into (along with temporary training inventory folders that are deleted once training is finished)
- species (str, optional) – the species that should be used to assign to the newly trained trees
Kwargs (optional): refer to the PyRF documentation for configuration settings
Returns: None
ibeis.algo.detect.yolo module¶
Interface to pydarknet yolo object detection.
-
ibeis.algo.detect.yolo.
detect
(gpath_list, detector=None, config_filepath=None, weight_filepath=None, **kwargs)[source]¶ Parameters: gpath_list (list of str) – the list of image paths that need detection Kwargs (optional): refer to the PyDarknet documentation for configuration settings
Returns: iter
-
ibeis.algo.detect.yolo.
detect_gid_list
(ibs, gid_list, downsample=False, **kwargs)[source]¶ Parameters: - gid_list (list of int) – the list of IBEIS image_rowids that need detection
- downsample (bool, optional) –
a flag to indicate if the original image sizes should be used; defaults to True
True: ibs.get_image_detectpaths() is used False: ibs.get_image_paths() is used
Kwargs (optional): refer to the PyDarknet documentation for configuration settings
Yields: results (list of dict)